Find the differential coefficient of the follow... - SS3 Mathematics Differential Calculus (Differentiation) Question
Find the differential coefficient of the following functions:
(a) \(y = 3x\ \left( x^{2} + 1 \right)\sin x\)
(b) \(y = \frac{1 + \tan x}{\sin x}\)
(c) \(y = \log_{e}{(1 + x)}\)
(a). \(y = 3x\ \left( x^{2} + 1 \right)\sin x\)
Resolving the first two functions, \(3x\) and \((x^{2} + 1)\) by product rule, then the third \(\sin x\)
Let \(u = 3x\) and \(v = (x^{2} + 1)\)
\[u\frac{dv}{dx} + v\frac{du}{dx}\]
\[= 3x\ (2x) + (x^{2} + 1)3\]
\[= 6x^{2} + 3x^{2} + 3\]
\[= 9x^{2} + 3\]
Resolving \(u = 9x^{2} + 3\)and \(v = \sin x\)
\[u\frac{dv}{dx} + v\frac{du}{dx}\]
\[= 9x^{2} + 3\left( \cos x \right) + \sin x(18x)\]
\[\frac{dy}{dx} = 9x^{2} + 3\left( \cos x \right) + 18x\sin x\]
\[\frac{dy}{dx} = 3\lbrack 3x^{2} + \cos x + 9x\sin x\rbrack\]
(b). \(y = \frac{1 + \tan x}{\sin x}\)
\[\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^{2}}\]
\(u = 1 + \tan x\), \(\frac{du}{dx} = \sec^{2}x\)
\(v = \sin x\), \(\frac{dv}{dx} = \cos x\)
\[\frac{dy}{dx} = \frac{\sin x\sec^{2}x - \left( 1 + \tan x \right)\cos x}{\sin^{2}x}\]
\[\frac{dy}{dx} = \frac{\sin x\sec^{2}x - {(cos}x + \sin x)}{\sin^{2}x}\]
\[\frac{dy}{dx} = \frac{\sin x\sec^{2}x - \cos x - \sin x}{\sin^{2}x}\]
(c). \(y = \log_{e}{(1 + x)}\)
Let \(u = 1 + x\), \(\frac{du}{dx} = 1\)
\(y = \log_{e}u\) \(\frac{dy}{du} = \frac{1}{u}\)
\(\frac{dy}{dx} = \frac{dy}{du}.\frac{du}{dx} = \frac{1}{u}.(1) = \frac{1}{u} = \frac{1}{1 + x}\)
Add your answer
No responses